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I. IWROIXJCTION

The result to be proved my be stated as follows

If a plane wave Is inc ident along the axis of sysetry of an axially

symmetric scatterer, and if the relative permittivity and permeability of

the obstacle satisfy the relation -r then the radar cross-

section is identically zero for all frequencies.

The theorem will first be proved in its general form, then demonstrated

for the Iiortant special case of an Inh ~geneous spherically syintric

scatterer. The analytical methods of the latter derivation will also be

used to deduce the angular distribution of low frequency radiation scattered

from such a medium. An interesting result at high frequencies will also

be pointed out.

MI PROOF OF THE TUEORM

Nkxiwell' equationsy aissumin harmonic time dependaece, my be written

in the form of two stationary 'wave equations

VxVxJ-k 2 Z + Ufr)z - VAL XVXZMO

V X K - k 2 H+U()U _ $C )XVXE=O

where the relative permittivity e and relative permability p are arbitrary

complex functions of r,. and U(r,) k 2 [ ()e)].The standard

boundary conditions for a scattering problem will be assmed: at Infinity

the total fields are the san of an Incident plane wave and an outgoing

spherical wave; the usual continuity conditions at surfaces of discontinuity,

if any, of 4Q~) and u(C) will also be assumd.



It vill be convenient to replace the differential equations plus

boundary conditions by the two integral equations

I( ) o(r) +fo(r, r').( [U+rf)((')- 9 xV'xI(r')] r (a)
i(C)E () ./o(f , X') [u(r') (r)- x: 'x V'x ,)! ,

where the tensor Green's function G(r~, E') is the outgoing solution of

V xVx (E, ') - k2 O(, r') 2 - I ( -r1)

with the explicit form

O( , r') - (I -k* ". V 7' gr °

2~ V ) g(rs~'
eikE

9( r, e R a .r -r'

To specialize to the axially symmetric problem, the axis of symmetry will

be chosen to be in the direction of propagation of the incident Pl wave,

i.e., Zo x# Jo is a vector pointing in the 2o direction. The assumtion

of an outgoing scattered wave implies that, in the backward direction, the
phase of R relative to that of I has been changed so thatscat t .

is a vector pointing in the -0 direction. (The change In relative p ase

400of ad A is potible since Iand are solutions of different euations. )

then identical. and they may be written as the single Integral equation

1() C,(S) + f (j, go) - [U(.f) (~V) - x V'x r&)
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There are two linearly independent vector solutions to this equation, one

corresponding to ao(r) polarized in, say, the x-direction and the other

corresponding to Kor) polarized in the y-direction (the +z-dtrection Is

then the direction of propgation, ko, of the incident wave). In the

first case the assumed axial symmetry requires the backscattered field to

be polarized in the x-direction, while in the second case the backscattered

field must be polarized in the y-drection. Furthermore, because of the

axial syametry the phase change of the x-polarized backscattered wave mast

be exactly equal to the phase chag of the y-polarised backscattered Vave.

Therefore, the relative phase of the two scattered waves Is the same as

their relative phase in the incident wave. IdentifyinJ with the solution

corresponding to the x-polarized incident wave and I with the solution

corresponding to the y-polarizsed Incident wave, we conclude that

mscatt * .mcatt. rest be a vector pointin In the direction of propagation

of the incident wave. But this is consistent with the assmqtloa of

outgoing scattered waves only if the be~kcattered fields ae Identically

zero. There are no explicit restrictAs on frequency, and the theorem

is therefore valid for all frequencies for which e

Note that the strict equality of a(r) A &( is actually not

necessary for the validity of the theorem. From Eqs. (1), it Is clear

that the 31 and I equations are Identical provided only that I&Lr) - ba (L)p

where b Is any constant. (This relation must be satisfied of course,

throughout the whole space contalaing source and scatters.) The proof,

for b A 1, proceeds essentially as before, with only a re-definition of

the ree-space" wave umber required.
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111. FNEACS

A interesting consequence of the fact that the 1 and 3 fields are

described by a single vector equation Is that there exists an explicit

non-differential relation between the I and R fields. It may be shown

that if K(C) in a solution to Eq. (3), te Q(R r) is also a solu-

tion, where R is the rotation operator (referred to a Cartesian basis)

0 .1 0

= 1 0 0 .

0 0 1

This my be established by operating on Eq. (3) with and replacing the

arguments r, r' of the scalar, vectorand tensor functions by 'R r

and using the syminetry relations, r')

jRGlO?)e1 nl - GCr. F.1). Since the incident fieldxC0 (,) is

a plane wave propapting in the +z-drection, we my choose o(j) - zeik

Then RO ( R- 1 ;) - ? e z is a vector representing an Incident plane wave

polarized in the +y-direction. Therefore, if &Lr) is one solution of

qF. (3), I(R "1 J) is the second linearly independent solution, and we

my identify l(r) and R(r) with K(r) and 0,1(0 -1 ), respectively .

Incidentally, the relation #(r) - 0j(&R ) can nov be used to give

a very simple proof of the theorem, for on the s-axis r( r) )

so that the s-caqionemt of S M I x N becomes simply

8 (o 0, z) jLo( 0, o) + I1(OQ 0,3)1
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Since Sz(O 0, z) - 0, the far-zone scattered field on the symmetry axis

must propagate only in the +z-direction, which contradicts the outping-

wave boundary condition in the backward direction. unless the scattered

field is zero.

Since the backscatter cross-section is zero when it) = L), it

should increare continuously from zero as a(r) - () is allowed to

differ slightly from zero everywhere. This suggests that there my

exist an expansion of the fields in term of a uniforly small quantity,

f a()I- f [&(Lr) ], which should hold for large,. as well as smllI, values

of e. In any case, the fact that the cross-section in the backward

direction mist vanish when e = p, should serve as an additional validity

criterion for any approximtion method developed to apply when e and

both differ from unity.

IV. THE SPEMCALLY SDW32IC CASE

It would be useful if the angular distribution of the radiation,

when & = e, could be couared with that when a - 1 in order to

determine whether the radiation which is not scattered in the backward

direction appears instead at angles close to ., or whether the forward

scattering alplitude is enhanced. Such a coq ison is not possible

for the general case. However. it will now be shown that, for long

wavelengths, the angular distribution for a seiclysymtric,. but

inomo, scatterer has a particularly siaqle form when e(r) = p(r),

and that the radiation pattern is peaed in the forward direction.
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It my be verified by direct substitution into the J4mvell equations

that the general solution3 to the spherically symetric problem is

£(~(r) =x [p(r) e (r) 4(r) r + 1Vx(Vx [e(r) O(r)j),()

where I and 0 satisfy the following equations:

V2 4P+[ [k pa- .Pi %p . (6)

dr

The boumdary conditions on qP and 0 must be such that

E()-) 2 "ez (ikz) + A(Q,) r " exp(ikr) (8)
A-

Here, x is the initial polarization, and A is the vector scattering

amp ltude. The absolute square of A Is the differential cross section.

The radial equations associated with Eqe. (6) and (7) are

d2 (rR) + [k2 c, - pi d-12 (p4) -i i ] r A-O ,

dry rZ

42 W + [k2, -* 2 (e4) -. UI-.+.21).rs 0-o

with boundary conditions

rB&, rSLk - 0
rp l r - o °  ,

rut hi"n(kr -I/+SL) +
rot r n- k-tg2+w

-6-



The phase shifts, Stand determine the scattering. When Is(r) a a(r),

the radial equations are identical,. and 9L- q

The scattering &mplitude to derived by substituting eXpansions of the

form

for Y and 0 in Sq. (4). The expansion coeffiefents can then be evaluated

by imposing the asymptotic condition, Eq. (8), provided that the vector

plane wave is expressed by its known expansion in spherical harmonics. In

general, A is a complicated function of angles, but because of the equality

of the phase shifts and when P1(r) 4t (r), considerable simplification

of the vector scattering amplitude Is possible. t Is readily shown that in

this case .(Q, 0 ) reduces to the relatively simple expression

(9)+( + ) Pi(,) .P

where c m cos 9. The theorem can now be easily verified for this special

case since, for 0 = so the quantity in square brackets vanishes for every

vlue of A, and &(c) Is therefore identically zero.

When ka €.= 1, where a Is the churacteristic di ensIon of the scatterer,

only the 1 phase shift is Important, and one finds from Eq. (9) that

(Qo, 0)1 2- . _y sin2  (I + coo 9)2
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in contrast to a (1 + coi2 0) angular dependence of the differential cross-

section when p = 1.5 Thus, at least in the long wave length limit. the

distribution shifts to predominantly forward scattering. Whether this is

true also at higher frequencies is not known. Hovever., for sufficiently

short wavelengths the Schiff high-energy approxzition for large-angle

electrcmagnetic scattering6 can, in principle, be used to compute the

angular distribution in the neighborhood of the backward direction.

It is interesting to note that the Schiff formula also yields zero

for the scattered amplitude in the backward direction when c r - P(r),

under no assumptions other than ap - 1-c- 1 and kR -- - 1, where R is

a characteristic dtaension of the scatterer. The assumption of axial

sysetry is not required; thus the theorem should be approxImtely valid

for an arbitrary scatterer., provided only that = l, kR =-=-1.

V.

The authors wish to acknowledge several helpful discussions with

I&. Robert Margulies and Dr. Lee Frantz.
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1.* A special case of this result was, to the authors' knowledge, first
asserted by V. H. Weston (Conductron Corp. internal commication,

1961) who required e - p count. in the scattering medium.

2.* This is true in Gaussian units,, but because of the linearity of the

equations we may make the more general statement that A(Q) U hoo.
where h is a constant appropriate to the chosen system of units.

3. D..Arnush, Space Technology IAboratorr ,Report No. 6110-71e6-RU-00l,
(unpublished).

I&. W. K. H. Panofsky and M. Phillips, Classical Electricity and )XgnetIsm

(Addison-Wesley Publishing Co., Reading, Mass... 1955), P. 205.

5. The result for ~a=1 refers to the less general case of a homogeneous
sphere, in which the differential cross-section has boon integrated

over 0. See J. A. Stratton, Electroumgetic Theory (Mbrav-il Bok

Co.,. New York, 191)p p. 570.
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